

Redislite - Redis Easy to Use

Redislite provides a self-configuring Redis Key-Value store in a Python module.

This makes it possible to use Redis without the need to install and configure a redis server.

Table of Contents

	What is redislite
	Enhanced Redis Bindings

	Secure By Default

	Backwards Compatibility

	How redislite works

	Using redislite with existing python code
	Celery

	redis-collections

	RQ

	Walrus

	Code Documentation
	Module

	redislite.Redis() Class

	redislite.StrictRedis() Class

	Functions to patch the redis module

	Functions for troubleshooting

	Using the Redis Server directly

	Contributing to redislite
	First steps

	Writing code

	Improvements to documentation

	FAQ

	Submitting Code

	Reviewing Pull Requests

	CI Pipelines

Indices and tables

	Index

	Module Index

	Search Page

What is redislite

The redislite module contains a complete redis server along with enhanced redis bindings
that automatically set up and run the embedded redis server when accessed and
shutdown and cleanup the redis server when python exits.

Enhanced Redis Bindings

The enhanced redis bindings include extended versions of the
redis.Redis() and redis.StrictRedis() classes. It also
contains functions to patch the redis module to use these new extended classes.

Secure By Default

Redislite defaults to a redis server configuration that is more secure than
the default configuration for the redis server. This is due to the following
differences:

	Redislite defaults to using unix domain sockets for the redis connection. So
the server is not accessible over the computer network by default.

	Redislite locks down the permissions of the unix domain sockets used to only
allow the creating user access.

Backwards Compatibility

To provide compatibility with existing python code that uses the redis bindings.
Redislite provides functions to patch the redis module to use the
redislite module. This allows most existing code that uses redis to
use the redislite features.

How redislite works

redislite provides enhanced versions of the redis.Redis() and
redis.StrictRedis() classes.

These enhanced classes accept the same arguments as the corresponding redis
classes.

Both enhanced classes accept one additional optional argument, which is the
filename to use for the redis rdb file.

These enhanced classes provide the following additional functionality:

	They configure and start an embedded copy of the redis server running on a
unix domain socket in the redislite temp directory for the communication to
the redis service.

	TCP communication is disabled by default, unless server settings are passed
to enable it.

	
	The classes have two additional attributes:

	
	db - The path to the db backing file for the redis instance.

	pid - The process id (pid) of the embedded redis server.

	If the db argument is passed and there is another redislite object using
that db, it will create a new connection to that redislite instance.

	The redis server for a redislite object is shutdown and it’s configuration
is deleted when the last redislite connection to the server is terminated.

	If a redis rdb filename is specified, the cleanup will not delete the rdb
file so it can be used again.

Using redislite with existing python code

The redislite patch functionality can be used to make many existing python
modules that use redis to work with minimal modifications.

Celery

settings.py

from redislite import Redis

Create a Redis instance using redislite
REDIS_DB_PATH = os.path.join('/tmp/my_redis.db')
rdb = Redis(REDIS_DB_PATH)
REDIS_SOCKET_PATH = 'redis+socket://%s' % (rdb.socket_file,)

Use redislite for the Celery broker
BROKER_URL = REDIS_SOCKET_PATH

(Optionally) use redislite for the Celery result backend
CELERY_RESULT_BACKEND = REDIS_SOCKET_PATH

your_celery_app.py

from celery import Celery

for django projects
from django.conf import settings
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'settings')
celery_app = Celery('my_app')
celery_app.config_from_object('django.conf:settings')

for other projects
celery_app = Celery('my_app')
celery_app.config_from_object('settings')

Note that only one Redis instance is created, and others merely discover the running instance and use its existing socket file path.

redis-collections

Use a redisliste.StrictRedis() object for the redis-collections redis keyword
argument to use it with redislite. If the redis-collection variable needs to
be persistent make sure to pass the redislite.StrictRedis() class a dbfilename
argument to use.

>>> import redislite
>>> import redis_collections
>>> example_dict = redis_collections.Dict(redis=redislite.StrictRedis('example.rdb'))
>>> example_dict['test'] = 'This is a test variable'
>>> example_dict
<redis_collections.Dict at 7908fc2cc97d49fda4bce7365df3b373 {'test': 'This is a test variable'}>
>>>

RQ

When using rq you will need to specify a db_filename for the connection.

To put jobs on queues, you don’t have to do anything special, just define your typically lengthy or blocking function:

import requests

def count_words_at_url(url):
 resp = requests.get(url)
 return len(resp.text.split())

Then, create a RQ queue:

from redislite import Redis
from rq import Queue

q = Queue(connection=Redis('RQ_example.rdb'))

And enqueue the function call:

from my_module import count_words_at_url
result = q.enqueue(
 count_words_at_url, 'http://nvie.com')

For a more complete example, refer to the RQ docs [http://python-rq.org/]. To start executing enqueued function calls in the background, start a worker from your project’s directory:

$ rqworker
*** Listening for work on default
Got count_words_at_url('http://nvie.com') from default
Job result = 818
*** Listening for work on default

Walrus

First, install both walrus and redislite.

Install both modules:

$ pip install walrus redislite

Then patch redis before using walrus. Optionally specifying a redis db if
the result needs to be usable after the script finishes running.

>>> from redislite.patch import patch_redis
>>> patch_redis('/tmp/walrus.db')
>>> from walrus import *
>>> db = Database()
>>> huey = db.Hash('huey')
>>> huey.update(color='white', temperament='ornery', type='kitty')
<Hash "huey": {'color': 'white', 'type': 'kitty', 'temperament': 'ornery'}>
>>> huey.keys()
['color', 'type', 'temperament']
>>> 'color' in huey
True
>>> huey['color']
'white'

Code Documentation

Module

This module provides access to a redis server using a redis server embedded
in the module. It provides enhanced redis bindings that are able to configure
run, and cleanup a redis server when they are accessed.

	
redislite.__version__

	str – The version of the redislite module.

	
redislite.__redis_executable__

	str – The full path to the embedded redis-server executable.

	
redislite.__redis_server_version__

	str – The version of the embedded redis-server built intot he module.

	
redislite.__git_source_url__

	str – The github web url for the source code used to generate this module.
This will be an empty string if the module was not built from a github
repo.

	
redislite.__git_version__

	str – Version number derived from the number of git revisions.
This will be an empty string if not built from a git repo.

	
redislite.__git_origin__

	str – The git origin of the source repository the module was built from.
This will be an empty string if not built from a git repo.

	
redislite.__git_branch__

	str – The git branch the module was built from. This will be an empty string
if not built from a git repo.

	
redislite.__git_hash__

	str – The git hash value for the code used to build this module.

Example

To access redis using a newly installed and configured redis server, then
set and retrieve some data:

>>> import redislite
>>> connection = redislite.Redis()
>>> connection.set('key', 'value')
True
>>> connection.get('key')
'value'
>>>

redislite.Redis() Class

	
class redislite.Redis(*args, **kwargs)

	Bases: redislite.client.RedisMixin, redis.client.Redis

This class provides an enhanced version of the redis.Redis() class
that uses an embedded redis-server by default.

	Parameters:	
	dbfilename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the Redis db file to be used.

This argument is only used if the embedded redis-server is used.

The value of this argument is provided as the “dbfilename” setting in
the embedded redis server configuration. This will result in the
embedded redis server dumping it’s database to this file on exit/close.

This will also result in the embedded redis server using an
existing redis rdb database if the file exists on start.

If this file exists and is in use by another redislite instance,
this class will get a reference to the existing running redis
instance so both instances share the same redis-server process
and don’t corrupt the db file.

	serverconfig (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dictionary of additional redis-server configuration settings.
The key is the name of the setting in the configuration file, the
values may be list, str, or None.

If the value is a list the setting will be repeated in the
configuration, once for each value.

If the value is a string, the setting will occur once with that string
as the setting.

If the value is None, the setting will be removed from the default
setting values if it exists in the defaults.

	host (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The hostname or ip address of the redis server to connect to.

If this argument is specified the embedded redis server will not be
used.

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – The port number of the redis server to connect to.

If this argument is specified, the embedded redis server will not be
used.

	**kwargs (optional) – All other keyword arguments supported by the redis.Redis()
class are supported.

	Returns:	

	Return type:	A redislite.Redis() object

	Raises:	RedisLiteServerStartError – The embedded Redis server failed to start

Example

redis_connection = redislite.Redis('/tmp/redis.db')

Notes

If the dbfilename argument is not provided each instance will get a
different redis-server instance.

	
db

	str – The fully qualified filename associated with the redis dbfilename
configuration setting. This attribute is read only.

	
logfile

	str – The name of the redis-server logfile

	
pid

	int – Pid of the running embedded redis server, this attribute is read
only.

	
redis_log

	str – The contents of the redis-server log file

	
start_timeout

	float – Number of seconds to wait for the redis-server process to start
before generating a RedisLiteServerStartError exception.

	
append(key, value)

	Appends the string value to the value at key. If key
doesn’t already exist, create it with a value of value.
Returns the new length of the value at key.

	
bgrewriteaof()

	Tell the Redis server to rewrite the AOF file from data in memory.

	
bgsave()

	Tell the Redis server to save its data to disk. Unlike save(),
this method is asynchronous and returns immediately.

	
bitcount(key, start=None, end=None)

	Returns the count of set bits in the value of key. Optional
start and end paramaters indicate which bytes to consider

	
bitop(operation, dest, *keys)

	Perform a bitwise operation using operation between keys and
store the result in dest.

	
bitpos(key, bit, start=None, end=None)

	Return the position of the first bit set to 1 or 0 in a string.
start and end difines search range. The range is interpreted
as a range of bytes and not a range of bits, so start=0 and end=2
means to look at the first three bytes.

	
blpop(keys, timeout=0)

	LPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpop(keys, timeout=0)

	RPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpoplpush(src, dst, timeout=0)

	Pop a value off the tail of src, push it on the head of dst
and then return it.

This command blocks until a value is in src or until timeout
seconds elapse, whichever is first. A timeout value of 0 blocks
forever.

	
client_getname()

	Returns the current connection name

	
client_kill(address)

	Disconnects the client at address (ip:port)

	
client_list()

	Returns a list of currently connected clients

	
client_setname(name)

	Sets the current connection name

	
config_get(pattern='*')

	Return a dictionary of configuration based on the pattern

	
config_resetstat()

	Reset runtime statistics

	
config_rewrite()

	Rewrite config file with the minimal change to reflect running config

	
config_set(name, value)

	Set config item name with value

	
db

	Return the connection string to allow connecting to the same redis
server.
:return: connection_path

	
dbsize()

	Returns the number of keys in the current database

	
debug_object(key)

	Returns version specific meta information about a given key

	
decr(name, amount=1)

	Decrements the value of key by amount. If no key exists,
the value will be initialized as 0 - amount

	
delete(*names)

	Delete one or more keys specified by names

	
dump(name)

	Return a serialized version of the value stored at the specified key.
If key does not exist a nil bulk reply is returned.

	
echo(value)

	Echo the string back from the server

	
eval(script, numkeys, *keys_and_args)

	Execute the Lua script, specifying the numkeys the script
will touch and the key names and argument values in keys_and_args.
Returns the result of the script.

In practice, use the object returned by register_script. This
function exists purely for Redis API completion.

	
evalsha(sha, numkeys, *keys_and_args)

	Use the sha to execute a Lua script already registered via EVAL
or SCRIPT LOAD. Specify the numkeys the script will touch and the
key names and argument values in keys_and_args. Returns the result
of the script.

In practice, use the object returned by register_script. This
function exists purely for Redis API completion.

	
execute_command(*args, **options)

	Execute a command and return a parsed response

	
exists(name)

	Returns a boolean indicating whether key name exists

	
expire(name, time)

	Set an expire flag on key name for time seconds. time
can be represented by an integer or a Python timedelta object.

	
expireat(name, when)

	Set an expire flag on key name. when can be represented
as an integer indicating unix time or a Python datetime object.

	
flushall()

	Delete all keys in all databases on the current host

	
flushdb()

	Delete all keys in the current database

	
from_url(url, db=None, **kwargs)

	Return a Redis client object configured from the given URL.

For example:

redis://[:password]@localhost:6379/0
unix://[:password]@/path/to/socket.sock?db=0

There are several ways to specify a database number. The parse function
will return the first specified option:

	A db querystring option, e.g. redis://localhost?db=0

	If using the redis:// scheme, the path argument of the url, e.g.
redis://localhost/0

	The db argument to this function.

If none of these options are specified, db=0 is used.

Any additional querystring arguments and keyword arguments will be
passed along to the ConnectionPool class’s initializer. In the case
of conflicting arguments, querystring arguments always win.

	
get(name)

	Return the value at key name, or None if the key doesn’t exist

	
getbit(name, offset)

	Returns a boolean indicating the value of offset in name

	
getrange(key, start, end)

	Returns the substring of the string value stored at key,
determined by the offsets start and end (both are inclusive)

	
getset(name, value)

	Sets the value at key name to value
and returns the old value at key name atomically.

	
hdel(name, *keys)

	Delete keys from hash name

	
hexists(name, key)

	Returns a boolean indicating if key exists within hash name

	
hget(name, key)

	Return the value of key within the hash name

	
hgetall(name)

	Return a Python dict of the hash’s name/value pairs

	
hincrby(name, key, amount=1)

	Increment the value of key in hash name by amount

	
hincrbyfloat(name, key, amount=1.0)

	Increment the value of key in hash name by floating amount

	
hkeys(name)

	Return the list of keys within hash name

	
hlen(name)

	Return the number of elements in hash name

	
hmget(name, keys, *args)

	Returns a list of values ordered identically to keys

	
hmset(name, mapping)

	Set key to value within hash name for each corresponding
key and value from the mapping dict.

	
hscan(name, cursor=0, match=None, count=None)

	Incrementally return key/value slices in a hash. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hscan_iter(name, match=None, count=None)

	Make an iterator using the HSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hset(name, key, value)

	Set key to value within hash name
Returns 1 if HSET created a new field, otherwise 0

	
hsetnx(name, key, value)

	Set key to value within hash name if key does not
exist. Returns 1 if HSETNX created a field, otherwise 0.

	
hvals(name)

	Return the list of values within hash name

	
incr(name, amount=1)

	Increments the value of key by amount. If no key exists,
the value will be initialized as amount

	
incrby(name, amount=1)

	Increments the value of key by amount. If no key exists,
the value will be initialized as amount

	
incrbyfloat(name, amount=1.0)

	Increments the value at key name by floating amount.
If no key exists, the value will be initialized as amount

	
info(section=None)

	Returns a dictionary containing information about the Redis server

The section option can be used to select a specific section
of information

The section option is not supported by older versions of Redis Server,
and will generate ResponseError

	
keys(pattern='*')

	Returns a list of keys matching pattern

	
lastsave()

	Return a Python datetime object representing the last time the
Redis database was saved to disk

	
lindex(name, index)

	Return the item from list name at position index

Negative indexes are supported and will return an item at the
end of the list

	
linsert(name, where, refvalue, value)

	Insert value in list name either immediately before or after
[where] refvalue

Returns the new length of the list on success or -1 if refvalue
is not in the list.

	
llen(name)

	Return the length of the list name

	
lock(name, timeout=None, sleep=0.1, blocking_timeout=None, lock_class=None, thread_local=True)

	Return a new Lock object using key name that mimics
the behavior of threading.Lock.

If specified, timeout indicates a maximum life for the lock.
By default, it will remain locked until release() is called.

sleep indicates the amount of time to sleep per loop iteration
when the lock is in blocking mode and another client is currently
holding the lock.

blocking_timeout indicates the maximum amount of time in seconds to
spend trying to acquire the lock. A value of None indicates
continue trying forever. blocking_timeout can be specified as a
float or integer, both representing the number of seconds to wait.

lock_class forces the specified lock implementation.

thread_local indicates whether the lock token is placed in
thread-local storage. By default, the token is placed in thread local
storage so that a thread only sees its token, not a token set by
another thread. Consider the following timeline:

	time: 0, thread-1 acquires my-lock, with a timeout of 5 seconds.

	thread-1 sets the token to “abc”

	time: 1, thread-2 blocks trying to acquire my-lock using the

	Lock instance.

	time: 5, thread-1 has not yet completed. redis expires the lock

	key.

	time: 5, thread-2 acquired my-lock now that it’s available.

	thread-2 sets the token to “xyz”

	time: 6, thread-1 finishes its work and calls release(). if the

	token is not stored in thread local storage, then
thread-1 would see the token value as “xyz” and would be
able to successfully release the thread-2’s lock.

In some use cases it’s necessary to disable thread local storage. For
example, if you have code where one thread acquires a lock and passes
that lock instance to a worker thread to release later. If thread
local storage isn’t disabled in this case, the worker thread won’t see
the token set by the thread that acquired the lock. Our assumption
is that these cases aren’t common and as such default to using
thread local storage.

	
lpop(name)

	Remove and return the first item of the list name

	
lpush(name, *values)

	Push values onto the head of the list name

	
lpushx(name, value)

	Push value onto the head of the list name if name exists

	
lrange(name, start, end)

	Return a slice of the list name between
position start and end

start and end can be negative numbers just like
Python slicing notation

	
lrem(name, value, num=0)

	Remove the first num occurrences of elements equal to value
from the list stored at name.

	The num argument influences the operation in the following ways:

	num > 0: Remove elements equal to value moving from head to tail.
num < 0: Remove elements equal to value moving from tail to head.
num = 0: Remove all elements equal to value.

	
lset(name, index, value)

	Set position of list name to value

	
ltrim(name, start, end)

	Trim the list name, removing all values not within the slice
between start and end

start and end can be negative numbers just like
Python slicing notation

	
mget(keys, *args)

	Returns a list of values ordered identically to keys

	
move(name, db)

	Moves the key name to a different Redis database db

	
mset(*args, **kwargs)

	Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs.

	
msetnx(*args, **kwargs)

	Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful.

	
object(infotype, key)

	Return the encoding, idletime, or refcount about the key

	
parse_response(connection, command_name, **options)

	Parses a response from the Redis server

	
persist(name)

	Removes an expiration on name

	
pexpire(name, time)

	Set an expire flag on key name for time milliseconds.
time can be represented by an integer or a Python timedelta
object.

	
pexpireat(name, when)

	Set an expire flag on key name. when can be represented
as an integer representing unix time in milliseconds (unix time * 1000)
or a Python datetime object.

	
pfadd(name, *values)

	Adds the specified elements to the specified HyperLogLog.

	
pfcount(*sources)

	Return the approximated cardinality of
the set observed by the HyperLogLog at key(s).

	
pfmerge(dest, *sources)

	Merge N different HyperLogLogs into a single one.

	
pid

	Get the current redis-server process id.

	Returns:	The process id of the redis-server process associated with this
redislite instance or None. If the redis-server is not
running.

	Return type:	pid(int [https://docs.python.org/3/library/functions.html#int])

	
ping()

	Ping the Redis server

	
pipeline(transaction=True, shard_hint=None)

	Return a new pipeline object that can queue multiple commands for
later execution. transaction indicates whether all commands
should be executed atomically. Apart from making a group of operations
atomic, pipelines are useful for reducing the back-and-forth overhead
between the client and server.

	
psetex(name, time_ms, value)

	Set the value of key name to value that expires in time_ms
milliseconds. time_ms can be represented by an integer or a Python
timedelta object

	
pttl(name)

	Returns the number of milliseconds until the key name will expire

	
publish(channel, message)

	Publish message on channel.
Returns the number of subscribers the message was delivered to.

	
pubsub(**kwargs)

	Return a Publish/Subscribe object. With this object, you can
subscribe to channels and listen for messages that get published to
them.

	
randomkey()

	Returns the name of a random key

	
redis_log

	Redis server log content as a string

	Returns:	Log contents

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
redis_log_tail(lines=1, width=80)

	The redis log output

	Parameters:	
	lines (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of lines from the end of the logfile to return, a value of
0 will return all lines, default=1

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – The expected average width of a log file line, this is used to
determine the chunksize of the seek operations, default=80

	Returns:	List of strings containing the lines from the logfile requested

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
register_script(script)

	Register a Lua script specifying the keys it will touch.
Returns a Script object that is callable and hides the complexity of
deal with scripts, keys, and shas. This is the preferred way to work
with Lua scripts.

	
rename(src, dst)

	Rename key src to dst

	
renamenx(src, dst)

	Rename key src to dst if dst doesn’t already exist

	
restore(name, ttl, value)

	Create a key using the provided serialized value, previously obtained
using DUMP.

	
rpop(name)

	Remove and return the last item of the list name

	
rpoplpush(src, dst)

	RPOP a value off of the src list and atomically LPUSH it
on to the dst list. Returns the value.

	
rpush(name, *values)

	Push values onto the tail of the list name

	
rpushx(name, value)

	Push value onto the tail of the list name if name exists

	
sadd(name, *values)

	Add value(s) to set name

	
save()

	Tell the Redis server to save its data to disk,
blocking until the save is complete

	
scan(cursor=0, match=None, count=None)

	Incrementally return lists of key names. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
scan_iter(match=None, count=None)

	Make an iterator using the SCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
scard(name)

	Return the number of elements in set name

	
script_exists(*args)

	Check if a script exists in the script cache by specifying the SHAs of
each script as args. Returns a list of boolean values indicating if
if each already script exists in the cache.

	
script_flush()

	Flush all scripts from the script cache

	
script_kill()

	Kill the currently executing Lua script

	
script_load(script)

	Load a Lua script into the script cache. Returns the SHA.

	
sdiff(keys, *args)

	Return the difference of sets specified by keys

	
sdiffstore(dest, keys, *args)

	Store the difference of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sentinel(*args)

	Redis Sentinel’s SENTINEL command.

	
sentinel_get_master_addr_by_name(service_name)

	Returns a (host, port) pair for the given service_name

	
sentinel_master(service_name)

	Returns a dictionary containing the specified masters state.

	
sentinel_masters()

	Returns a list of dictionaries containing each master’s state.

	
sentinel_monitor(name, ip, port, quorum)

	Add a new master to Sentinel to be monitored

	
sentinel_remove(name)

	Remove a master from Sentinel’s monitoring

	
sentinel_sentinels(service_name)

	Returns a list of sentinels for service_name

	
sentinel_set(name, option, value)

	Set Sentinel monitoring parameters for a given master

	
sentinel_slaves(service_name)

	Returns a list of slaves for service_name

	
set(name, value, ex=None, px=None, nx=False, xx=False)

	Set the value at key name to value

ex sets an expire flag on key name for ex seconds.

px sets an expire flag on key name for px milliseconds.

	nx if set to True, set the value at key name to value if it

	does not already exist.

	xx if set to True, set the value at key name to value if it

	already exists.

	
set_response_callback(command, callback)

	Set a custom Response Callback

	
setbit(name, offset, value)

	Flag the offset in name as value. Returns a boolean
indicating the previous value of offset.

	
setex(name, value, time)

	Set the value of key name to value that expires in time
seconds. time can be represented by an integer or a Python
timedelta object.

	
setnx(name, value)

	Set the value of key name to value if key doesn’t exist

	
setrange(name, offset, value)

	Overwrite bytes in the value of name starting at offset with
value. If offset plus the length of value exceeds the
length of the original value, the new value will be larger than before.
If offset exceeds the length of the original value, null bytes
will be used to pad between the end of the previous value and the start
of what’s being injected.

Returns the length of the new string.

	
shutdown()

	Shutdown the server

	
sinter(keys, *args)

	Return the intersection of sets specified by keys

	
sinterstore(dest, keys, *args)

	Store the intersection of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sismember(name, value)

	Return a boolean indicating if value is a member of set name

	
slaveof(host=None, port=None)

	Set the server to be a replicated slave of the instance identified
by the host and port. If called without arguments, the
instance is promoted to a master instead.

	
slowlog_get(num=None)

	Get the entries from the slowlog. If num is specified, get the
most recent num items.

	
slowlog_len()

	Get the number of items in the slowlog

	
slowlog_reset()

	Remove all items in the slowlog

	
smembers(name)

	Return all members of the set name

	
smove(src, dst, value)

	Move value from set src to set dst atomically

	
sort(name, start=None, num=None, by=None, get=None, desc=False, alpha=False, store=None, groups=False)

	Sort and return the list, set or sorted set at name.

start and num allow for paging through the sorted data

	by allows using an external key to weight and sort the items.

	Use an “*” to indicate where in the key the item value is located

	get allows for returning items from external keys rather than the

	sorted data itself. Use an “*” to indicate where int he key
the item value is located

desc allows for reversing the sort

alpha allows for sorting lexicographically rather than numerically

	store allows for storing the result of the sort into

	the key store

	groups if set to True and if get contains at least two

	elements, sort will return a list of tuples, each containing the
values fetched from the arguments to get.

	
spop(name)

	Remove and return a random member of set name

	
srandmember(name, number=None)

	If number is None, returns a random member of set name.

If number is supplied, returns a list of number random
memebers of set name. Note this is only available when running
Redis 2.6+.

	
srem(name, *values)

	Remove values from set name

	
sscan(name, cursor=0, match=None, count=None)

	Incrementally return lists of elements in a set. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
sscan_iter(name, match=None, count=None)

	Make an iterator using the SSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
strlen(name)

	Return the number of bytes stored in the value of name

	
substr(name, start, end=-1)

	Return a substring of the string at key name. start and end
are 0-based integers specifying the portion of the string to return.

	
sunion(keys, *args)

	Return the union of sets specified by keys

	
sunionstore(dest, keys, *args)

	Store the union of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
time()

	Returns the server time as a 2-item tuple of ints:
(seconds since epoch, microseconds into this second).

	
transaction(func, *watches, **kwargs)

	Convenience method for executing the callable func as a transaction
while watching all keys specified in watches. The ‘func’ callable
should expect a single argument which is a Pipeline object.

	
ttl(name)

	Returns the number of seconds until the key name will expire

	
type(name)

	Returns the type of key name

	
unwatch()

	Unwatches the value at key name, or None of the key doesn’t exist

	
wait(num_replicas, timeout)

	Redis synchronous replication
That returns the number of replicas that processed the query when
we finally have at least num_replicas, or when the timeout was
reached.

	
watch(*names)

	Watches the values at keys names, or None if the key doesn’t exist

	
zadd(name, *args, **kwargs)

	NOTE: The order of arguments differs from that of the official ZADD
command. For backwards compatability, this method accepts arguments
in the form of name1, score1, name2, score2, while the official Redis
documents expects score1, name1, score2, name2.

If you’re looking to use the standard syntax, consider using the
StrictRedis class. See the API Reference section of the docs for more
information.

Set any number of element-name, score pairs to the key name. Pairs
can be specified in two ways:

As *args, in the form of: name1, score1, name2, score2, ...
or as **kwargs, in the form of: name1=score1, name2=score2, ...

The following example would add four values to the ‘my-key’ key:
redis.zadd(‘my-key’, ‘name1’, 1.1, ‘name2’, 2.2, name3=3.3, name4=4.4)

	
zcard(name)

	Return the number of elements in the sorted set name

	
zcount(name, min, max)

	Returns the number of elements in the sorted set at key name with
a score between min and max.

	
zincrby(name, value, amount=1)

	Increment the score of value in sorted set name by amount

	
zinterstore(dest, keys, aggregate=None)

	Intersect multiple sorted sets specified by keys into
a new sorted set, dest. Scores in the destination will be
aggregated based on the aggregate, or SUM if none is provided.

	
zlexcount(name, min, max)

	Return the number of items in the sorted set name between the
lexicographical range min and max.

	
zrange(name, start, end, desc=False, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from sorted set name between
start and end sorted in ascending order.

start and end can be negative, indicating the end of the range.

desc a boolean indicating whether to sort the results descendingly

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrangebylex(name, min, max, start=None, num=None)

	Return the lexicographical range of values from sorted set name
between min and max.

If start and num are specified, then return a slice of the
range.

	
zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from the sorted set name with scores
between min and max.

If start and num are specified, then return a slice
of the range.

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func` a callable used to cast the score return value

	
zrank(name, value)

	Returns a 0-based value indicating the rank of value in sorted set
name

	
zrem(name, *values)

	Remove member values from sorted set name

	
zremrangebylex(name, min, max)

	Remove all elements in the sorted set name between the
lexicographical range specified by min and max.

Returns the number of elements removed.

	
zremrangebyrank(name, min, max)

	Remove all elements in the sorted set name with ranks between
min and max. Values are 0-based, ordered from smallest score
to largest. Values can be negative indicating the highest scores.
Returns the number of elements removed

	
zremrangebyscore(name, min, max)

	Remove all elements in the sorted set name with scores
between min and max. Returns the number of elements removed.

	
zrevrange(name, start, end, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from sorted set name between
start and end sorted in descending order.

start and end can be negative, indicating the end of the range.

withscores indicates to return the scores along with the values
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrevrangebylex(name, max, min, start=None, num=None)

	Return the reversed lexicographical range of values from sorted set
name between max and min.

If start and num are specified, then return a slice of the
range.

	
zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from the sorted set name with scores
between min and max in descending order.

If start and num are specified, then return a slice
of the range.

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrevrank(name, value)

	Returns a 0-based value indicating the descending rank of
value in sorted set name

	
zscan(name, cursor=0, match=None, count=None, score_cast_func=<type 'float'>)

	Incrementally return lists of elements in a sorted set. Also return a
cursor indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscan_iter(name, match=None, count=None, score_cast_func=<type 'float'>)

	Make an iterator using the ZSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscore(name, value)

	Return the score of element value in sorted set name

	
zunionstore(dest, keys, aggregate=None)

	Union multiple sorted sets specified by keys into
a new sorted set, dest. Scores in the destination will be
aggregated based on the aggregate, or SUM if none is provided.

redislite.StrictRedis() Class

	
class redislite.StrictRedis(*args, **kwargs)

	Bases: redislite.client.RedisMixin, redis.client.StrictRedis

This class provides an enhanced version of the redis.StrictRedis()
class that uses an embedded redis-server by default.

Example

redis_connection = redislite.StrictRedis('/tmp/redis.db')

Notes

If the dbfilename argument is not provided each instance will get a
different redis-server instance.

	Parameters:	dbfilename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Redis db file to be used. This argument is only
used if the embedded redis-server is used. The value of this
argument is provided as the “dbfilename” setting in the embedded
redis server configuration. This will result in the embedded redis
server dumping it’s database to this file on
exit/close. This will also result in the embedded redis server
using an existing redis database if the file exists on start.
If this file exists and is in use by another redislite instance,
this class will get a reference to the existing running redis
instance so both instances share the same redis-server process
and don’t corrupt the db file.

	Kwargs:

	
	host(str):

	The hostname or ip address of the redis server to connect to. If
this argument is not None, the embedded redis server will not be
used. Defaults to None.

	port(int): The

	port number of the redis server to connect to. If this argument is
not None, the embedded redis server will not be used. Defaults to
None.

	serverconfig(dict): A dictionary of additional redis-server

	configuration settings. All keys and values must be str.
Supported keys are:

activerehashing,
aof_rewrite_incremental_fsync,
appendfilename,
appendfsync,
appendonly,
auto_aof_rewrite_min_size,
auto_aof_rewrite_percentage,
aof_load_truncated,
databases,
hash_max_ziplist_entries,
hash_max_ziplist_value,
hll_sparse_max_bytes,
hz,
latency_monitor_threshold,
list_max_ziplist_entries,
list_max_ziplist_value,
logfile,
loglevel,
lua_time_limit,
no_appendfsync_on_rewrite,
notify_keyspace_events,
port,
rdbchecksum,
rdbcompression,
repl_disable_tcp_nodelay,
slave_read_only,
slave_serve_stale_data,
stop_writes_on_bgsave_error,
tcp_backlog,
tcp_keepalive,
unixsocket,
unixsocketperm,
slave_priority,
timeout,
set_max_intset_entries,
zset_max_ziplist_entries,
zset_max_ziplist_value

	Returns:	A redis.StrictRedis() class object if the host or port
arguments where set or a redislite.StrictRedis() object
otherwise.

	Raises:	RedisLiteServerStartError

	
db

	string – The fully qualified filename associated with the redis dbfilename
configuration setting. This attribute is read only.

	
pid

	int – Pid of the running embedded redis server, this attribute is read
only.

	
start_timeout

	float – Number of seconds to wait for the redis-server process to start
before generating a RedisLiteServerStartError exception.

	
append(key, value)

	Appends the string value to the value at key. If key
doesn’t already exist, create it with a value of value.
Returns the new length of the value at key.

	
bgrewriteaof()

	Tell the Redis server to rewrite the AOF file from data in memory.

	
bgsave()

	Tell the Redis server to save its data to disk. Unlike save(),
this method is asynchronous and returns immediately.

	
bitcount(key, start=None, end=None)

	Returns the count of set bits in the value of key. Optional
start and end paramaters indicate which bytes to consider

	
bitop(operation, dest, *keys)

	Perform a bitwise operation using operation between keys and
store the result in dest.

	
bitpos(key, bit, start=None, end=None)

	Return the position of the first bit set to 1 or 0 in a string.
start and end difines search range. The range is interpreted
as a range of bytes and not a range of bits, so start=0 and end=2
means to look at the first three bytes.

	
blpop(keys, timeout=0)

	LPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpop(keys, timeout=0)

	RPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpoplpush(src, dst, timeout=0)

	Pop a value off the tail of src, push it on the head of dst
and then return it.

This command blocks until a value is in src or until timeout
seconds elapse, whichever is first. A timeout value of 0 blocks
forever.

	
client_getname()

	Returns the current connection name

	
client_kill(address)

	Disconnects the client at address (ip:port)

	
client_list()

	Returns a list of currently connected clients

	
client_setname(name)

	Sets the current connection name

	
config_get(pattern='*')

	Return a dictionary of configuration based on the pattern

	
config_resetstat()

	Reset runtime statistics

	
config_rewrite()

	Rewrite config file with the minimal change to reflect running config

	
config_set(name, value)

	Set config item name with value

	
db

	Return the connection string to allow connecting to the same redis
server.
:return: connection_path

	
dbsize()

	Returns the number of keys in the current database

	
debug_object(key)

	Returns version specific meta information about a given key

	
decr(name, amount=1)

	Decrements the value of key by amount. If no key exists,
the value will be initialized as 0 - amount

	
delete(*names)

	Delete one or more keys specified by names

	
dump(name)

	Return a serialized version of the value stored at the specified key.
If key does not exist a nil bulk reply is returned.

	
echo(value)

	Echo the string back from the server

	
eval(script, numkeys, *keys_and_args)

	Execute the Lua script, specifying the numkeys the script
will touch and the key names and argument values in keys_and_args.
Returns the result of the script.

In practice, use the object returned by register_script. This
function exists purely for Redis API completion.

	
evalsha(sha, numkeys, *keys_and_args)

	Use the sha to execute a Lua script already registered via EVAL
or SCRIPT LOAD. Specify the numkeys the script will touch and the
key names and argument values in keys_and_args. Returns the result
of the script.

In practice, use the object returned by register_script. This
function exists purely for Redis API completion.

	
execute_command(*args, **options)

	Execute a command and return a parsed response

	
exists(name)

	Returns a boolean indicating whether key name exists

	
expire(name, time)

	Set an expire flag on key name for time seconds. time
can be represented by an integer or a Python timedelta object.

	
expireat(name, when)

	Set an expire flag on key name. when can be represented
as an integer indicating unix time or a Python datetime object.

	
flushall()

	Delete all keys in all databases on the current host

	
flushdb()

	Delete all keys in the current database

	
from_url(url, db=None, **kwargs)

	Return a Redis client object configured from the given URL.

For example:

redis://[:password]@localhost:6379/0
unix://[:password]@/path/to/socket.sock?db=0

There are several ways to specify a database number. The parse function
will return the first specified option:

	A db querystring option, e.g. redis://localhost?db=0

	If using the redis:// scheme, the path argument of the url, e.g.
redis://localhost/0

	The db argument to this function.

If none of these options are specified, db=0 is used.

Any additional querystring arguments and keyword arguments will be
passed along to the ConnectionPool class’s initializer. In the case
of conflicting arguments, querystring arguments always win.

	
get(name)

	Return the value at key name, or None if the key doesn’t exist

	
getbit(name, offset)

	Returns a boolean indicating the value of offset in name

	
getrange(key, start, end)

	Returns the substring of the string value stored at key,
determined by the offsets start and end (both are inclusive)

	
getset(name, value)

	Sets the value at key name to value
and returns the old value at key name atomically.

	
hdel(name, *keys)

	Delete keys from hash name

	
hexists(name, key)

	Returns a boolean indicating if key exists within hash name

	
hget(name, key)

	Return the value of key within the hash name

	
hgetall(name)

	Return a Python dict of the hash’s name/value pairs

	
hincrby(name, key, amount=1)

	Increment the value of key in hash name by amount

	
hincrbyfloat(name, key, amount=1.0)

	Increment the value of key in hash name by floating amount

	
hkeys(name)

	Return the list of keys within hash name

	
hlen(name)

	Return the number of elements in hash name

	
hmget(name, keys, *args)

	Returns a list of values ordered identically to keys

	
hmset(name, mapping)

	Set key to value within hash name for each corresponding
key and value from the mapping dict.

	
hscan(name, cursor=0, match=None, count=None)

	Incrementally return key/value slices in a hash. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hscan_iter(name, match=None, count=None)

	Make an iterator using the HSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hset(name, key, value)

	Set key to value within hash name
Returns 1 if HSET created a new field, otherwise 0

	
hsetnx(name, key, value)

	Set key to value within hash name if key does not
exist. Returns 1 if HSETNX created a field, otherwise 0.

	
hvals(name)

	Return the list of values within hash name

	
incr(name, amount=1)

	Increments the value of key by amount. If no key exists,
the value will be initialized as amount

	
incrby(name, amount=1)

	Increments the value of key by amount. If no key exists,
the value will be initialized as amount

	
incrbyfloat(name, amount=1.0)

	Increments the value at key name by floating amount.
If no key exists, the value will be initialized as amount

	
info(section=None)

	Returns a dictionary containing information about the Redis server

The section option can be used to select a specific section
of information

The section option is not supported by older versions of Redis Server,
and will generate ResponseError

	
keys(pattern='*')

	Returns a list of keys matching pattern

	
lastsave()

	Return a Python datetime object representing the last time the
Redis database was saved to disk

	
lindex(name, index)

	Return the item from list name at position index

Negative indexes are supported and will return an item at the
end of the list

	
linsert(name, where, refvalue, value)

	Insert value in list name either immediately before or after
[where] refvalue

Returns the new length of the list on success or -1 if refvalue
is not in the list.

	
llen(name)

	Return the length of the list name

	
lock(name, timeout=None, sleep=0.1, blocking_timeout=None, lock_class=None, thread_local=True)

	Return a new Lock object using key name that mimics
the behavior of threading.Lock.

If specified, timeout indicates a maximum life for the lock.
By default, it will remain locked until release() is called.

sleep indicates the amount of time to sleep per loop iteration
when the lock is in blocking mode and another client is currently
holding the lock.

blocking_timeout indicates the maximum amount of time in seconds to
spend trying to acquire the lock. A value of None indicates
continue trying forever. blocking_timeout can be specified as a
float or integer, both representing the number of seconds to wait.

lock_class forces the specified lock implementation.

thread_local indicates whether the lock token is placed in
thread-local storage. By default, the token is placed in thread local
storage so that a thread only sees its token, not a token set by
another thread. Consider the following timeline:

	time: 0, thread-1 acquires my-lock, with a timeout of 5 seconds.

	thread-1 sets the token to “abc”

	time: 1, thread-2 blocks trying to acquire my-lock using the

	Lock instance.

	time: 5, thread-1 has not yet completed. redis expires the lock

	key.

	time: 5, thread-2 acquired my-lock now that it’s available.

	thread-2 sets the token to “xyz”

	time: 6, thread-1 finishes its work and calls release(). if the

	token is not stored in thread local storage, then
thread-1 would see the token value as “xyz” and would be
able to successfully release the thread-2’s lock.

In some use cases it’s necessary to disable thread local storage. For
example, if you have code where one thread acquires a lock and passes
that lock instance to a worker thread to release later. If thread
local storage isn’t disabled in this case, the worker thread won’t see
the token set by the thread that acquired the lock. Our assumption
is that these cases aren’t common and as such default to using
thread local storage.

	
lpop(name)

	Remove and return the first item of the list name

	
lpush(name, *values)

	Push values onto the head of the list name

	
lpushx(name, value)

	Push value onto the head of the list name if name exists

	
lrange(name, start, end)

	Return a slice of the list name between
position start and end

start and end can be negative numbers just like
Python slicing notation

	
lrem(name, count, value)

	Remove the first count occurrences of elements equal to value
from the list stored at name.

	The count argument influences the operation in the following ways:

	count > 0: Remove elements equal to value moving from head to tail.
count < 0: Remove elements equal to value moving from tail to head.
count = 0: Remove all elements equal to value.

	
lset(name, index, value)

	Set position of list name to value

	
ltrim(name, start, end)

	Trim the list name, removing all values not within the slice
between start and end

start and end can be negative numbers just like
Python slicing notation

	
mget(keys, *args)

	Returns a list of values ordered identically to keys

	
move(name, db)

	Moves the key name to a different Redis database db

	
mset(*args, **kwargs)

	Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs.

	
msetnx(*args, **kwargs)

	Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful.

	
object(infotype, key)

	Return the encoding, idletime, or refcount about the key

	
parse_response(connection, command_name, **options)

	Parses a response from the Redis server

	
persist(name)

	Removes an expiration on name

	
pexpire(name, time)

	Set an expire flag on key name for time milliseconds.
time can be represented by an integer or a Python timedelta
object.

	
pexpireat(name, when)

	Set an expire flag on key name. when can be represented
as an integer representing unix time in milliseconds (unix time * 1000)
or a Python datetime object.

	
pfadd(name, *values)

	Adds the specified elements to the specified HyperLogLog.

	
pfcount(*sources)

	Return the approximated cardinality of
the set observed by the HyperLogLog at key(s).

	
pfmerge(dest, *sources)

	Merge N different HyperLogLogs into a single one.

	
pid

	Get the current redis-server process id.

	Returns:	The process id of the redis-server process associated with this
redislite instance or None. If the redis-server is not
running.

	Return type:	pid(int [https://docs.python.org/3/library/functions.html#int])

	
ping()

	Ping the Redis server

	
pipeline(transaction=True, shard_hint=None)

	Return a new pipeline object that can queue multiple commands for
later execution. transaction indicates whether all commands
should be executed atomically. Apart from making a group of operations
atomic, pipelines are useful for reducing the back-and-forth overhead
between the client and server.

	
psetex(name, time_ms, value)

	Set the value of key name to value that expires in time_ms
milliseconds. time_ms can be represented by an integer or a Python
timedelta object

	
pttl(name)

	Returns the number of milliseconds until the key name will expire

	
publish(channel, message)

	Publish message on channel.
Returns the number of subscribers the message was delivered to.

	
pubsub(**kwargs)

	Return a Publish/Subscribe object. With this object, you can
subscribe to channels and listen for messages that get published to
them.

	
randomkey()

	Returns the name of a random key

	
redis_log

	Redis server log content as a string

	Returns:	Log contents

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
redis_log_tail(lines=1, width=80)

	The redis log output

	Parameters:	
	lines (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of lines from the end of the logfile to return, a value of
0 will return all lines, default=1

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – The expected average width of a log file line, this is used to
determine the chunksize of the seek operations, default=80

	Returns:	List of strings containing the lines from the logfile requested

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

	
register_script(script)

	Register a Lua script specifying the keys it will touch.
Returns a Script object that is callable and hides the complexity of
deal with scripts, keys, and shas. This is the preferred way to work
with Lua scripts.

	
rename(src, dst)

	Rename key src to dst

	
renamenx(src, dst)

	Rename key src to dst if dst doesn’t already exist

	
restore(name, ttl, value)

	Create a key using the provided serialized value, previously obtained
using DUMP.

	
rpop(name)

	Remove and return the last item of the list name

	
rpoplpush(src, dst)

	RPOP a value off of the src list and atomically LPUSH it
on to the dst list. Returns the value.

	
rpush(name, *values)

	Push values onto the tail of the list name

	
rpushx(name, value)

	Push value onto the tail of the list name if name exists

	
sadd(name, *values)

	Add value(s) to set name

	
save()

	Tell the Redis server to save its data to disk,
blocking until the save is complete

	
scan(cursor=0, match=None, count=None)

	Incrementally return lists of key names. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
scan_iter(match=None, count=None)

	Make an iterator using the SCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
scard(name)

	Return the number of elements in set name

	
script_exists(*args)

	Check if a script exists in the script cache by specifying the SHAs of
each script as args. Returns a list of boolean values indicating if
if each already script exists in the cache.

	
script_flush()

	Flush all scripts from the script cache

	
script_kill()

	Kill the currently executing Lua script

	
script_load(script)

	Load a Lua script into the script cache. Returns the SHA.

	
sdiff(keys, *args)

	Return the difference of sets specified by keys

	
sdiffstore(dest, keys, *args)

	Store the difference of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sentinel(*args)

	Redis Sentinel’s SENTINEL command.

	
sentinel_get_master_addr_by_name(service_name)

	Returns a (host, port) pair for the given service_name

	
sentinel_master(service_name)

	Returns a dictionary containing the specified masters state.

	
sentinel_masters()

	Returns a list of dictionaries containing each master’s state.

	
sentinel_monitor(name, ip, port, quorum)

	Add a new master to Sentinel to be monitored

	
sentinel_remove(name)

	Remove a master from Sentinel’s monitoring

	
sentinel_sentinels(service_name)

	Returns a list of sentinels for service_name

	
sentinel_set(name, option, value)

	Set Sentinel monitoring parameters for a given master

	
sentinel_slaves(service_name)

	Returns a list of slaves for service_name

	
set(name, value, ex=None, px=None, nx=False, xx=False)

	Set the value at key name to value

ex sets an expire flag on key name for ex seconds.

px sets an expire flag on key name for px milliseconds.

	nx if set to True, set the value at key name to value if it

	does not already exist.

	xx if set to True, set the value at key name to value if it

	already exists.

	
set_response_callback(command, callback)

	Set a custom Response Callback

	
setbit(name, offset, value)

	Flag the offset in name as value. Returns a boolean
indicating the previous value of offset.

	
setex(name, time, value)

	Set the value of key name to value that expires in time
seconds. time can be represented by an integer or a Python
timedelta object.

	
setnx(name, value)

	Set the value of key name to value if key doesn’t exist

	
setrange(name, offset, value)

	Overwrite bytes in the value of name starting at offset with
value. If offset plus the length of value exceeds the
length of the original value, the new value will be larger than before.
If offset exceeds the length of the original value, null bytes
will be used to pad between the end of the previous value and the start
of what’s being injected.

Returns the length of the new string.

	
shutdown()

	Shutdown the server

	
sinter(keys, *args)

	Return the intersection of sets specified by keys

	
sinterstore(dest, keys, *args)

	Store the intersection of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sismember(name, value)

	Return a boolean indicating if value is a member of set name

	
slaveof(host=None, port=None)

	Set the server to be a replicated slave of the instance identified
by the host and port. If called without arguments, the
instance is promoted to a master instead.

	
slowlog_get(num=None)

	Get the entries from the slowlog. If num is specified, get the
most recent num items.

	
slowlog_len()

	Get the number of items in the slowlog

	
slowlog_reset()

	Remove all items in the slowlog

	
smembers(name)

	Return all members of the set name

	
smove(src, dst, value)

	Move value from set src to set dst atomically

	
sort(name, start=None, num=None, by=None, get=None, desc=False, alpha=False, store=None, groups=False)

	Sort and return the list, set or sorted set at name.

start and num allow for paging through the sorted data

	by allows using an external key to weight and sort the items.

	Use an “*” to indicate where in the key the item value is located

	get allows for returning items from external keys rather than the

	sorted data itself. Use an “*” to indicate where int he key
the item value is located

desc allows for reversing the sort

alpha allows for sorting lexicographically rather than numerically

	store allows for storing the result of the sort into

	the key store

	groups if set to True and if get contains at least two

	elements, sort will return a list of tuples, each containing the
values fetched from the arguments to get.

	
spop(name)

	Remove and return a random member of set name

	
srandmember(name, number=None)

	If number is None, returns a random member of set name.

If number is supplied, returns a list of number random
memebers of set name. Note this is only available when running
Redis 2.6+.

	
srem(name, *values)

	Remove values from set name

	
sscan(name, cursor=0, match=None, count=None)

	Incrementally return lists of elements in a set. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
sscan_iter(name, match=None, count=None)

	Make an iterator using the SSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
strlen(name)

	Return the number of bytes stored in the value of name

	
substr(name, start, end=-1)

	Return a substring of the string at key name. start and end
are 0-based integers specifying the portion of the string to return.

	
sunion(keys, *args)

	Return the union of sets specified by keys

	
sunionstore(dest, keys, *args)

	Store the union of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
time()

	Returns the server time as a 2-item tuple of ints:
(seconds since epoch, microseconds into this second).

	
transaction(func, *watches, **kwargs)

	Convenience method for executing the callable func as a transaction
while watching all keys specified in watches. The ‘func’ callable
should expect a single argument which is a Pipeline object.

	
ttl(name)

	Returns the number of seconds until the key name will expire

	
type(name)

	Returns the type of key name

	
unwatch()

	Unwatches the value at key name, or None of the key doesn’t exist

	
wait(num_replicas, timeout)

	Redis synchronous replication
That returns the number of replicas that processed the query when
we finally have at least num_replicas, or when the timeout was
reached.

	
watch(*names)

	Watches the values at keys names, or None if the key doesn’t exist

	
zadd(name, *args, **kwargs)

	Set any number of score, element-name pairs to the key name. Pairs
can be specified in two ways:

As *args, in the form of: score1, name1, score2, name2, ...
or as **kwargs, in the form of: name1=score1, name2=score2, ...

The following example would add four values to the ‘my-key’ key:
redis.zadd(‘my-key’, 1.1, ‘name1’, 2.2, ‘name2’, name3=3.3, name4=4.4)

	
zcard(name)

	Return the number of elements in the sorted set name

	
zcount(name, min, max)

	Returns the number of elements in the sorted set at key name with
a score between min and max.

	
zincrby(name, value, amount=1)

	Increment the score of value in sorted set name by amount

	
zinterstore(dest, keys, aggregate=None)

	Intersect multiple sorted sets specified by keys into
a new sorted set, dest. Scores in the destination will be
aggregated based on the aggregate, or SUM if none is provided.

	
zlexcount(name, min, max)

	Return the number of items in the sorted set name between the
lexicographical range min and max.

	
zrange(name, start, end, desc=False, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from sorted set name between
start and end sorted in ascending order.

start and end can be negative, indicating the end of the range.

desc a boolean indicating whether to sort the results descendingly

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrangebylex(name, min, max, start=None, num=None)

	Return the lexicographical range of values from sorted set name
between min and max.

If start and num are specified, then return a slice of the
range.

	
zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from the sorted set name with scores
between min and max.

If start and num are specified, then return a slice
of the range.

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func` a callable used to cast the score return value

	
zrank(name, value)

	Returns a 0-based value indicating the rank of value in sorted set
name

	
zrem(name, *values)

	Remove member values from sorted set name

	
zremrangebylex(name, min, max)

	Remove all elements in the sorted set name between the
lexicographical range specified by min and max.

Returns the number of elements removed.

	
zremrangebyrank(name, min, max)

	Remove all elements in the sorted set name with ranks between
min and max. Values are 0-based, ordered from smallest score
to largest. Values can be negative indicating the highest scores.
Returns the number of elements removed

	
zremrangebyscore(name, min, max)

	Remove all elements in the sorted set name with scores
between min and max. Returns the number of elements removed.

	
zrevrange(name, start, end, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from sorted set name between
start and end sorted in descending order.

start and end can be negative, indicating the end of the range.

withscores indicates to return the scores along with the values
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrevrangebylex(name, max, min, start=None, num=None)

	Return the reversed lexicographical range of values from sorted set
name between max and min.

If start and num are specified, then return a slice of the
range.

	
zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=<type 'float'>)

	Return a range of values from the sorted set name with scores
between min and max in descending order.

If start and num are specified, then return a slice
of the range.

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func a callable used to cast the score return value

	
zrevrank(name, value)

	Returns a 0-based value indicating the descending rank of
value in sorted set name

	
zscan(name, cursor=0, match=None, count=None, score_cast_func=<type 'float'>)

	Incrementally return lists of elements in a sorted set. Also return a
cursor indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscan_iter(name, match=None, count=None, score_cast_func=<type 'float'>)

	Make an iterator using the ZSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscore(name, value)

	Return the score of element value in sorted set name

	
zunionstore(dest, keys, aggregate=None)

	Union multiple sorted sets specified by keys into
a new sorted set, dest. Scores in the destination will be
aggregated based on the aggregate, or SUM if none is provided.

Functions to patch the redis module

Functions to replace (monkeypatch) the redis module classes
with redislite classes.

	
redislite.patch.patch_redis(dbfile=None)

	Patch all the redis classes provided by redislite that have been patched.

Example

patch_redis(‘/tmp/redis.db’)

Notes

If the dbfile parameter is not passed, each any instances of
redis.StrictRedis() class with no arguments will get a unique
instance of the redis server. If the dbfile parameter is provided, all
instances of redis.Redis() will share/reference the same
instance of the redis server.

	Parameters:	dbfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Redis db file to be used. If this argument is
passed all instances of the redis.Redis() class will
share a single instance of the embedded redis server.

	Returns:	This function does not return any values.

	
redislite.patch.patch_redis_Redis(dbfile=None)

	This class patches the redis module to replace the redis.Redis()
class with the redislite enhanced redislite.Redis() class that uses
the embedded redis server.

Example

patch_redis_Redis(‘/tmp/redis.db’)

Notes

If the dbfile parameter is not passed, each instance of the
redis.Redis() class with no arguments will get a separate redis
server. If the dbfile parameter is provided, all instances of
the redis.Redis() class without a host or path argument will
share/reference the same redis server.

	Parameters:	dbfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Redis db file to be used. If this argument is
passed all instances of the redis.Redis class will share a
single embedded redis server.

	Returns:	This function does not return any values.

	
redislite.patch.patch_redis_StrictRedis(dbfile=None)

	This class patches the redis module to replace the
:param dbfile:
redis.StrictRedis() class with the redislite enhanced
redislite.StrictRedis() class that uses the embedded redis server.

Example

patch_redis_StrictRedis(‘/tmp/redis.db’)

Notes

If the dbfile parameter is not passed, all redis.StrictRedis()
class with no arguments will get a separate redis server. If the
dbfile parameter is provided, all instances of the
redis.Redis() class passed with the same dbfile value
will share/reference the same redis server.

	Parameters:	dbfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Redis db file to be used. If this argument is
passed all instances of the redis.Redis class will share
a single instance of the embedded redis server.

	Returns:	This function does not return any values.

	
redislite.patch.unpatch_redis()

	Unpatch all the redis classes provided by redislite that have been
patched.

Example

unpatch_redis()

	
redislite.patch.unpatch_redis_Redis()

	This class unpatches the redis.Redis() class of the redis module
and restores the original redis.Redis() class.

Example

unpatch_redis_Redis()

	Returns:	This function does not return any values.

	
redislite.patch.unpatch_redis_StrictRedis()

	This class unpatches the redis.StrictRedis() class of the redis
module and restores the original redis.StrictRedis() class.

Example

unpatch_redis_StrictRedis()

	Returns:	This function does not return any values.

Functions for troubleshooting

Redislite Debug Utilities

This module contains utility functions useful for troubleshooting redislite.

This module can be run from the command line using the following command:

python -m redislite.debug

This will output information like the following:

$ python -m redislite.debug
Redislite debug information:
 Version: 1.0.171
 Module Path: /tmp/redislite/lib/python3.4/site-packages/redislite

 Installed Redis Server:
 Redis Executable: /tmp/redislite/lib/python3.4/site-packages/redislite/bin/redis-server
 build = 3a2b5dab9c14cd5e
 sha = 4657e47d:1
 bits = 64
 v = 2.8.17
 malloc = libc

 Found redis-server: /tmp/redislite/lib/python3.4/site-packages/redislite/bin/redis-server
 v = 2.8.17
 sha = 4657e47d:1
 malloc = libc
 bits = 64
 build = 3a2b5dab9c14cd5e

 Source Code Information
 Git Source URL: https://github.com/yahoo/redislite/tree/2ebd1b4d9c9ad41c78e8048fda3c69d2917c0348
 Git Hash: 2ebd1b4d9c9ad41c78e8048fda3c69d2917c0348
 Git Version: 1.0.171
 Git Origin: https://github.com/yahoo/redislite.git
 Git Branch: master

When run from the command line this will print a dump of information about
the module and it’s build information.

	
redislite.debug.debug_info()

	Return a multi-line string with the debug information
:return:

	
redislite.debug.debug_info_list()

	Return a list with the debug information
:return:

	
redislite.debug.print_debug_info()

	Display information about the redislite build, and redis-server on stdout.
:return:

Using the Redis Server directly

The redis-server application that is built by redislite during it’s installation is installed into the
scripts directory during the installation. This binary is a complete redis server and can be used independent of
the redislite module.

Since redis-lite installs an actual redis-server it is possible to use the redislite redis-server binary
directly and use more complex configurations than those created automatically by the redislite.Redis() and
redislite.StrictRedis() classes.

It is also possible to start the redis-server process with no arguments and use it with the unpatched redis
module.

See the Redis documentation [http://redis.io/documentation] for details about how to configure and run the
redis-server directly.

Contributing to redislite

First steps

The redislite project always needs more people to help others. As soon as you learn redislite, you can contribute in many ways:

	Join the pythonredislite group [https://groups.yahoo.com/neo/groups/pythonredislite/info] or the pythonreddislite mailing list and answer questions.

	Join the #redislite IRC channel [http://webchat.freenode.net/?channels=%23redislite&uio=d4] on Freenode and answer questions. By explaining redislite to other users, you’re going to learn a lot about the module yourself.

	Report an issue [https://github.com/yahoo/redislite/issues] or find a bug to fix on our issue [https://github.com/yahoo/redislite/issues] tracker on github.

	Improve the documentation.

	Write unit tests.

Sign the Contributor License Agreement

Prior to submitting a pull request, please complete a Yahoo CLA Agreement [https://yahoocla.herokuapp.com].

Set up Development Environment

All redislite development uses the python tox tool.

Install it with the python pip packaging tool, like this:

pip install tox

Writing documentation for redislite just requires a working python with the tox python package installed.

Running and testing code requires a working python development environment and c compiler sufficient to compile redis.

Redislite Development Site

Redislite development occurs on github at:
https://github.com/yahoo/redislite

All development should occur on a fork [https://guides.github.com/activities/forking/] or branch of the redislite github repo.

Building Codebase Familiarity by Reviewing Pull Requests

Look at pull requests to build familiarity with the codebase and the process. Provide comments and feedback if you see issues or can provide more information.

Some things to look for:

	See if the code is missing docs or tests.

	Look through the changes a pull request makes, and keep an eye out for syntax that is incompatible with older but still supported versions of Python.

	Make sure all the tests run and pass under all versions of python.

	Leave comments and feedback!

	Often times the codebase will change between a patch being submitted and the time it gets reviewed. Make sure it an older pull request still aapplies cleanly to the Master branch and functions as expected.

Writing code

Coding style

Code submitted to redislite should be compliant with the python pep8 [http://www.python.org/dev/peps/pep-0008/] style guide.

Prior to submitting code, check for pep8 [http://www.python.org/dev/peps/pep-0008/] conformance by running:

tox -e pep8

Then fix any issues.

Check Code for Common Errors

Before submitting a pull request it’s a good idea to run a code analysis tool to identify any common errors and indicators of bad code. Using python tools such as pylint [http://pypi.python.org/pypi/pylint] or flake8.

This can be done by running:

tox -e pylint

Testing

Any changes to source code should be tested, both for regression and for validation of new code.
All tests can be run using the tox tool without any arguments:

tox

Unit Tests

Working unit tests are required for all code that adds new functionality. Running the unit tests will generate a coverage report at the end of the test output. The report should show 100% coverage on all code. The report looks like:

Name Stmts Miss Branch BrMiss Cover Missing

redislite 6 0 0 0 100%
redislite.client 122 0 22 0 100%
redislite.configuration 11 0 0 0 100%
redislite.patch 41 0 12 0 100%

TOTAL 180 0 34 0 100%
--

To see this report, run:

tox

Improvements to documentation

Writing documentation

The redislite documentation is good but it can always be improved. Did you find a typo? Do you think that something
should be clarified? Go ahead and update the documentation in the docs/source directory.

Once your documentation changes have been made, run the following to generate the html documentation.:

tox -e build_docs

Then open the build/sphinx/html/index.html file in your web browser to ensure the generated documentation looks
correct.

Once the documentation looks correct, go ahead and submit a pull request.

Writing style

Code submitted to redislite should be compliant with the python pep8 [http://www.python.org/dev/peps/pep-0008/] style guide.

Prior to submitting code, check for pep8 [http://www.python.org/dev/peps/pep-0008/] conformance by running:

tox -e pep8

Then fix any issues.

FAQ

How can I help with triaging?

If there is an uncommented issue that reports a bug, try and reproduce it. If you can reproduce it and it seems valid, add a comment that you confirmed the bug. Consider writing a code to test for the bug’s behavior, even if you don’t fix the bug itself.

Submitting Code

To submit your code for inclusion upstream, do the following to ensure your
submission only includes your new changes:

	Make sure you have Completed a Yahoo CLA Agreement [https://yahoocla.herokuapp.com].

	Redislite development occurs on github at: https://github.com/yahoo/redislite. All
development should occur on a fork of the redislite github repo.

	Prior to submitting a pull request, perform a merge from the MASTER branch of the main
redislite repository into your fork. This will ensure your pull request only includes your
changes and will allow you to deal with any upstream changes that affect
your code.

	Clear up all PEP8 issues before submission. This will ensure your changesets only
include code changes and not formatting changes.

	Clear up or document exceptions for all PyLint/Flake8 issues. This will
ensure the evaluation and review of your code does not have common coding
errors and decrease the human time to evaluate changes.

Reviewing Pull Requests

When a pull request is submitted, three automated checks will automatically run, these checks are:

	Check that the submitter of the pull request has a Yahoo CLA Agreement [https://yahoocla.herokuapp.com] agreement on file.

	Check that all tests run without errors on all python releases that redislite supports.

	Check to ensure the coverage or amount of code that is not tested did not increase.

As these checks run the pull request will be annotated with the results. If any of these checks fail the issue found needs to be fixed before the pull request can be applied.

[image: A successful pull request]
An example of a pull request that successfully passed all automated checks.

CI Pipelines

Any new change branches should build correctly using CI prior to being submitted
for upstream inclusion.

Local changes can be tested by running:

tox

in the git root directory.

When a pull request is submitted the travis-ci service will automatically run
the tests on the code in the pull request and annotate the pull request with the
results.

Pull requests should never be submitted before the travis-ci pipeline indicates
the tests all pass.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 redislite	
 Redis binding with embedded redis server

 	
 	
 redislite.debug	

 	
 	
 redislite.patch	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

_

 	
 	__git_branch__ (in module redislite)

 	__git_hash__ (in module redislite)

 	__git_origin__ (in module redislite)

 	__git_source_url__ (in module redislite)

 	
 	__git_version__ (in module redislite)

 	__redis_executable__ (in module redislite)

 	__redis_server_version__ (in module redislite)

 	__version__ (in module redislite)

A

 	
 	append() (redislite.Redis method)

 	(redislite.StrictRedis method)

B

 	
 	bgrewriteaof() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	bgsave() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	bitcount() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	bitop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	bitpos() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	blpop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	brpop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	brpoplpush() (redislite.Redis method)

 	(redislite.StrictRedis method)

C

 	
 	client_getname() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	client_kill() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	client_list() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	client_setname() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	config_get() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	config_resetstat() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	config_rewrite() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	config_set() (redislite.Redis method)

 	(redislite.StrictRedis method)

D

 	
 	db (redislite.Redis attribute), [1]

 	(redislite.StrictRedis attribute), [1]

 	dbsize() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	debug_info() (in module redislite.debug)

 	debug_info_list() (in module redislite.debug)

 	debug_object() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	decr() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	delete() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	dump() (redislite.Redis method)

 	(redislite.StrictRedis method)

E

 	
 	echo() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	eval() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	evalsha() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	execute_command() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	exists() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	expire() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	expireat() (redislite.Redis method)

 	(redislite.StrictRedis method)

F

 	
 	flushall() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	flushdb() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	from_url() (redislite.Redis method)

 	(redislite.StrictRedis method)

G

 	
 	get() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	getbit() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	getrange() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	getset() (redislite.Redis method)

 	(redislite.StrictRedis method)

H

 	
 	hdel() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hexists() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hget() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hgetall() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hincrby() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hincrbyfloat() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hkeys() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hlen() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	hmget() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hmset() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hscan() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hscan_iter() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hset() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hsetnx() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	hvals() (redislite.Redis method)

 	(redislite.StrictRedis method)

I

 	
 	incr() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	incrby() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	incrbyfloat() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	info() (redislite.Redis method)

 	(redislite.StrictRedis method)

K

 	
 	keys() (redislite.Redis method)

 	(redislite.StrictRedis method)

L

 	
 	lastsave() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lindex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	linsert() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	llen() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lock() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	logfile (redislite.Redis attribute)

 	lpop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	lpush() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lpushx() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lrange() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lrem() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	lset() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	ltrim() (redislite.Redis method)

 	(redislite.StrictRedis method)

M

 	
 	mget() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	move() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	mset() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	msetnx() (redislite.Redis method)

 	(redislite.StrictRedis method)

O

 	
 	object() (redislite.Redis method)

 	(redislite.StrictRedis method)

P

 	
 	parse_response() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	patch_redis() (in module redislite.patch)

 	patch_redis_Redis() (in module redislite.patch)

 	patch_redis_StrictRedis() (in module redislite.patch)

 	persist() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pexpire() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pexpireat() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pfadd() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pfcount() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pfmerge() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	pid (redislite.Redis attribute), [1]

 	(redislite.StrictRedis attribute), [1]

 	ping() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pipeline() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	print_debug_info() (in module redislite.debug)

 	psetex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pttl() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	publish() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	pubsub() (redislite.Redis method)

 	(redislite.StrictRedis method)

R

 	
 	randomkey() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	Redis (class in redislite)

 	redis_log (redislite.Redis attribute), [1]

 	(redislite.StrictRedis attribute)

 	redis_log_tail() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	redislite (module)

 	redislite.debug (module)

 	redislite.patch (module)

 	register_script() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	rename() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	renamenx() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	restore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	rpop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	rpoplpush() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	rpush() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	rpushx() (redislite.Redis method)

 	(redislite.StrictRedis method)

S

 	
 	sadd() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	save() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	scan() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	scan_iter() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	scard() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	script_exists() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	script_flush() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	script_kill() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	script_load() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sdiff() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sdiffstore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_get_master_addr_by_name() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_master() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_masters() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_monitor() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_remove() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_sentinels() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_set() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sentinel_slaves() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	set() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	set_response_callback() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	setbit() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	setex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	setnx() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	setrange() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	shutdown() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sinter() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sinterstore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sismember() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	slaveof() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	slowlog_get() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	slowlog_len() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	slowlog_reset() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	smembers() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	smove() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sort() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	spop() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	srandmember() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	srem() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sscan() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sscan_iter() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	start_timeout (redislite.Redis attribute)

 	(redislite.StrictRedis attribute)

 	StrictRedis (class in redislite)

 	strlen() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	substr() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sunion() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	sunionstore() (redislite.Redis method)

 	(redislite.StrictRedis method)

T

 	
 	time() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	transaction() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	ttl() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	type() (redislite.Redis method)

 	(redislite.StrictRedis method)

U

 	
 	unpatch_redis() (in module redislite.patch)

 	unpatch_redis_Redis() (in module redislite.patch)

 	
 	unpatch_redis_StrictRedis() (in module redislite.patch)

 	unwatch() (redislite.Redis method)

 	(redislite.StrictRedis method)

W

 	
 	wait() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	watch() (redislite.Redis method)

 	(redislite.StrictRedis method)

Z

 	
 	zadd() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zcard() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zcount() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zincrby() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zinterstore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zlexcount() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrange() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrangebylex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrangebyscore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrank() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrem() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	
 	zremrangebylex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zremrangebyrank() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zremrangebyscore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrevrange() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrevrangebylex() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrevrangebyscore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zrevrank() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zscan() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zscan_iter() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zscore() (redislite.Redis method)

 	(redislite.StrictRedis method)

 	zunionstore() (redislite.Redis method)

 	(redislite.StrictRedis method)

GETTING STARTED:

New contributor and not sure what to do? Want to help but just don’t know how to get started? This is the section for you.

First steps

The redislite project always needs more people to help others. As soon as you learn redislite, you can contribute in many ways:

	Join the pythonredislite group [https://groups.yahoo.com/neo/groups/pythonredislite/info] or the pythonreddislite_ mailing list and answer questions.

	Join the #redislite IRC channel [http://webchat.freenode.net/?channels=%23redislite&uio=d4] on Freenode and answer questions. By explaining redislite to other users, you’re going to learn a lot about the module yourself.

	Report an issue_ or find a bug to fix on our issue_ tracker on github.

	Improve the documentation.

	Write unit tests.

Sign the Contributor License Agreement

Prior to submitting a pull request, please complete a Yahoo CLA Agreement [https://yahoocla.herokuapp.com].

Set up Development Environment

All redislite development uses the python tox tool.

Install it with the python pip packaging tool, like this:

pip install tox

Writing documentation for redislite just requires a working python with the tox python package installed.

Running and testing code requires a working python development environment and c compiler sufficient to compile redis.

Redislite Development Site

Redislite development occurs on github at:
https://github.com/yahoo/redislite

All development should occur on a fork [https://guides.github.com/activities/forking/] or branch of the redislite github repo.

FAQ

How can I help with triaging?

If there is an uncommented issue that reports a bug, try and reproduce it. If you can reproduce it and it seems valid, add a comment that you confirmed the bug. Consider writing a code to test for the bug’s behavior, even if you don’t fix the bug itself.

Reporting bugs and requesting features

Reporting bugs

Requesting features

How we make decisions

Triaging tickets

Triage workflow

Triage stages

Other triage attributes

Closing Tickets

Reviewing Pull Requests (code reviewing)

Look at pull requests to build familiarity with the codebase and the process. Provide comments and feedback if you see issues or can provide more information.

Some things to look for:
* See if the code is missing docs or tests.
* Look through the changes a pull request makes, and keep an eye out for syntax that is incompatible with older but still supported versions of Python.
* Make sure all the tests run and pass under all versions of python.
* Leave comments and feedback!
* Often times the codebase will change between a patch being submitted and the time it gets reviewed. Make sure it an older pull request still aapplies cleanly to the Master branch and functions as expected.

Writing code

Coding style

Code submitted to redislite should be compliant with the python pep8 [http://www.python.org/dev/peps/pep-0008/] style guide.

Prior to submitting code, check for pep8 [http://www.python.org/dev/peps/pep-0008/] conformance by running:

tox -e pep8

Then fix any issues.

Check Code for Common Errors

Before submitting a pull request it’s a good idea to run a code analysis tool to identify any common errors and indicators of bad code. Using python tools such as pylint [http://pypi.python.org/pypi/pylint] or flake8.

This can be done by running:

tox -e pylint

Testing

Any changes to source code should be tested, both for regression and for validation of new code.
All tests can be run using the tox tool without any arguments:

tox

Unit Tests

Working unit tests are required for all code that adds new functionality. Running the unit tests will generate a coverage report at the end of the test output. The report should show 100% coverage on all code. The report looks like:

Name Stmts Miss Branch BrMiss Cover Missing

redislite 6 0 0 0 100%
redislite.client 122 0 22 0 100%
redislite.configuration 11 0 0 0 100%
redislite.patch 41 0 12 0 100%

TOTAL 180 0 34 0 100%
--

To see this report, run:

tox

Submitting patches

Working with Git and GitHub

Improvements to documentation

Writing documentation

The redislite documentation is good but it can always be improved. Did you find a typo? Do you think that something
should be clarified? Go ahead and update the documentation in the docs/source directory.

Once your documentation changes have been made, run the following to generate the html documentation.:

tox -e build_docs

Then open the build/sphinx/html/index.html file in your web browser to ensure the generated documentation looks
correct.

Once the documentation looks correct, go ahead and submit a pull request.

Writing style

Code submitted to redislite should be compliant with the python pep8 [http://www.python.org/dev/peps/pep-0008/] style guide.

Prior to submitting code, check for pep8 [http://www.python.org/dev/peps/pep-0008/] conformance by running:

tox -e pep8

Then fix any issues.

Commonly used terms

Guidelines for reStructuredText files

An example

Spelling check

Committing code

Commit access

Handling pull requests

Committing guidelines

Submitting Code

To submit your code for inclusion upstream, do the following to ensure your
submission only includes your new changes:

	Make sure you have Completed a Yahoo CLA Agreement [https://yahoocla.herokuapp.com].

	Redislite development occurs on github at: https://github.com/yahoo/redislite. All
development should occur on a fork of the redislite github repo.

	Prior to submitting a pull request, perform a merge from the MASTER branch of the main
redislite repository into your fork. This will ensure your pull request only includes your
changes and will allow you to deal with any upstream changes that affect
your code.

	Clear up all PEP8 issues before submission. This will ensure your changesets only
include code changes and not formatting changes.

	Clear up or document exceptions for all PyLint/Flake8 issues. This will
ensure the evaluation and review of your code does not have common coding
errors and decrease the human time to evaluate changes.

Reverting commits

Troubleshooting redislite

Installation Issues

Advice for new contributors

New contributor and not sure what to do? Want to help but just don’t know how to get started? This is the section for you.

First steps

Start with these easy tasks to contribute to redislite.

Sign the Contributor License Agreement

Prior to submitting a pull request, please complete a Yahoo CLA Agreement [https://yahoocla.herokuapp.com].

Set up Development Environment

All redislite development uses the python tox tool.

Install it with the python pip packaging tool, like this:

pip install tox

Writing documentation for redislite just requires a working python with the tox python package installed.

Running and testing code requires a working python development environment and c compiler sufficient to compile redis.

Redislite Development Site

Redislite development occurs on github at:
https://github.com/yahoo/redislite

All development should occur on a fork [https://guides.github.com/activities/forking/] or branch of the redislite github repo.

Triage issues

If there is an uncommented issue that reports a bug, try and reproduce it. If you can reproduce it and it seems valid, add a comment that you confirmed the bug. Consider writing a code to test for the bug’s behavior, even if you don’t fix the bug itself.

Reviewing Pull Requests (code reviews)

Look at pull requests to build familiarity with the codebase and the process. Provide comments and feedback if you see issues or can provide more information.

Some things to look for:
* See if the code is missing docs or tests.
* Look through the changes a pull request makes, and keep an eye out for syntax that is incompatible with older but still supported versions of Python.
* Make sure all the tests run and pass under all versions of python.
* Leave comments and feedback!
* Often times the codebase will change between a patch being submitted and the time it gets reviewed. Make sure it an older pull request still aapplies cleanly to the Master branch and functions as expected.

Write some documentation

The redislite documentation is good but it can always be improved. Did you find a typo? Do you think that something
should be clarified? Go ahead and update the documentation in the docs/source directory.

Once your documentation changes have been made, run the following to generate the html documentation.:

tox -e build_docs

Then open the build/sphinx/html/index.html file in your web browser to ensure the generated documentation looks
correct.

One the documentation looks correct, go ahead and submit a pull request.

Testing

Any changes to source code should be tested, both for regression and for validation of new code.

Running all tests

All tests can be run using the tox tool without any arguments:

tox

Style Check

Code submitted to redislite should be compliant with the python pep8 [http://www.python.org/dev/peps/pep-0008/] style guide.

Prior to submitting code, check for pep8 [http://www.python.org/dev/peps/pep-0008/] conformance by running:

tox -e pep8

Then fix any issues.

Check Code for Common Errors

Before submitting a pull request it’s a good idea to run a code analysis tool to identify any common errors and indicators of bad code. Using python tools such as pylint [http://pypi.python.org/pypi/pylint] or flake8.

This can be done by running:

tox -e pylint

Unit Tests

Working unit tests are required for all code that adds new functionality. Running the unit tests will generate a coverage report at the end of the test output. The report should show 100% coverage on all code. The report looks like:

Name Stmts Miss Branch BrMiss Cover Missing

redislite 6 0 0 0 100%
redislite.client 122 0 22 0 100%
redislite.configuration 11 0 0 0 100%
redislite.patch 41 0 12 0 100%

TOTAL 180 0 34 0 100%
--

To see this report, run:

tox

 _static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Redislite - Redis Easy to Use

 		What is redislite

 		Enhanced Redis Bindings

 		Secure By Default

 		Backwards Compatibility

 		How redislite works

 		Using redislite with existing python code

 		Celery

 		redis-collections

 		RQ

 		Walrus

 		Code Documentation

 		Module

 		redislite.Redis() Class

 		redislite.StrictRedis() Class

 		Functions to patch the redis module

 		Functions for troubleshooting

 		Using the Redis Server directly

 		Contributing to redislite

 		First steps

 		Sign the Contributor License Agreement

 		Set up Development Environment

 		Redislite Development Site

 		Building Codebase Familiarity by Reviewing Pull Requests

 		Writing code

 		Coding style

 		Check Code for Common Errors

 		Testing

 		Unit Tests

 		Improvements to documentation

 		Writing documentation

 		Writing style

 		FAQ

 		How can I help with triaging?

 		Submitting Code

 		Reviewing Pull Requests

 		CI Pipelines

_images/pull_request.png
yahoo / redislite

update shields #29

WYl dwighthubbard wants to merge 2 commits into yahoo:master from dwighthubbard:master

+® Conversation 2 - Commits 2 [Files changed 1

- dwighthubbard commented 11 hours ago

No description provided.

[} Dwight Hubbard added some commits 11 hours ago

Update README shields

Update README shields

yahoocla commented 11 hours ago

CLA is valid!

coveralls commented 10 hours ago

@ Unwatch - 16 “ Star 136 Y Fork

+3-3 EEEE

Owner Labels
None yet
Milestone
No milestone
Assignee
v

No one—assign yourself

Ownel Notifications

4~ Unsubscribe
Youre receiving notifications
because you authored the
thread,

3 participants

8-1

Coverage remained the same at 100.0% when pulling ceadces on dwighthubbard:master into fsdacas

on yahoo:master.

‘Add more commits by pushing o the master branch on dwighthubbard/redislite.

& Lock pull request

v Allis well — 3 successful checks Hide all checks
v default — User has a valid Yahoo CLA Details
v continuous-integration/travis-ci/pr — The Travis Cl build passed Details
v coverage/coveralls — Coverage remained the same at 100.0% Details
This pull request can be automatically merged. [T—
You can also merge branches on the command line.

. Write Preview G2 Markdown supported [Editin fullscreen

Leave a comment
4

Attach images by dragging & dropping or selecting them.

7

<

X

